Google search

joi, 8 iulie 2010

Fission energetics

Nuclear power plant chimney.
    
    


    Typical fission events release about two hundred million eV (200 MeV) of energy for each fission event. By contrast, most chemical oxidation reactions (such as burning coal or TNT) release at most a few eV per event, so nuclear fuel contains at least ten million times more usable energy per unit mass than does chemical fuel. The energy of nuclear fission is released as kinetic energy of the fission products and fragments, and as electromagnetic radiation in the form of gamma rays; in a nuclear reactor, the energy is converted to heat as the particles and gamma rays collide with the atoms that make up the reactor and its working fluid, usually water or occasionally heavy water. Therefore we assume that it would be wiser to utilize nuclear fuel instead of conventional fuel in order to produce energy, mainly because our reserves of conventional fuel are running out quite rapidly. 

    When a uranium nucleus fissions into two daughter nuclei fragments, an energy of ~200 MeV is released. For uranium-235 (total mean fission energy 202.5 MeV), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which fly apart at about 3% of the speed of light, due to Coulomb repulsion. Also, an average of 2.5 neutrons are emitted with a kinetic energy of ~2 MeV each (total of 4.8 MeV). The fission reaction also releases ~7 MeV in prompt gamma ray photons. The latter figure means that a nuclear explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons, and the rest as kinetic energy of fission fragments ("heat"). In an atomic bomb, this heat may serve to raise the temperature of the bomb core to 100 million kelvin and cause secondary emission of soft X-rays, which convert some of this energy to ionizing radiation. However, in nuclear reactors, the fission fragment kinetic energy remains as low-temperature heat which causes little or no ionization.

    The total prompt fission energy amounts to about 181 MeV, or ~89% of the total energy. The remaining ~11% is released in beta decays which have various half-lives, but begin as a process in the fission products immediately; and in delayed gamma emissions associated with these beta decays. For example, in uranium-235 this delayed energy is divided into about 6.5 MeV in betas, 8.8 MeV in antineutrinos (released at the same time as the betas), and finally, an additional 6.3 MeV in delayed gamma emission from the excited beta-decay products (for a mean total of ~10 gamma ray emissions per fission, in all).

    As concerning the environment; if all nuclear waste is handled carefully, there should be nu threat to the ecosystem. During the process of converting the massive amount of nuclear energy into electric energy, only steam comes out the power plant's chimneys.  

Niciun comentariu:

Trimiteți un comentariu